

- 30 years in for-profit investor-owned, private not-forprofit, public/federal healthcare sectors
- Senior leadership roles include hospital CEO, regional service line VP, SVP/chief business development officer, and managing director/consultant for hospital turnaround firm
- Founder/CEO international management consultancy
- 20 years in higher education as graduate professor in management, finance, and economics
- Faculty:
 - Tulane University
 - University of Warwick (UK)
 - American College of Healthcare Executives
 - American Association for Physician Leadership

_

Transformation from volume to value

- CMS moving from fee-for-service volume-based reimbursement (fee for service) to value-based, linking quality and payment
- By 2018, CMS goals were:
 - 90% reimbursement tied to quality
 - 50% tied to alternative payment models (ACO, bundled payments)

Source: CMS (Jan. 26, 2015)

7

Solving the value equation

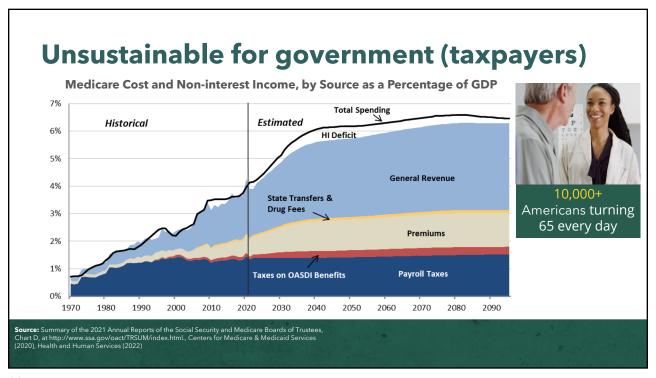
Quality

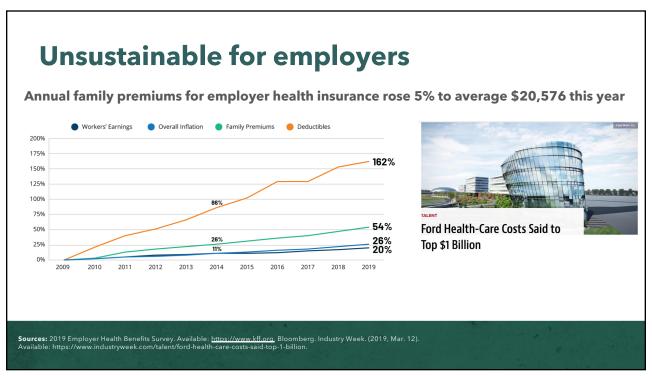
Value = (Outcomes, Safety, Service)

Cost

More with less...

"That's our new mission statement."


9


Purpose and premises

To improve stakeholder *value* by understanding how to effectively *interpret* and *integrate clinical* and *financial* information in an effective *business case*.

- 1. Healthcare organizations are under increasing pressure to simultaneously improve quality and cut costs
- 2. Leaders struggle with aligning their mission with the business case for it
- 3. Surviving in a value-based care environment requires making a sound business case

Unsustainable for providers Private commercial payers are pushing back on provider cost-shifting to subsidize waste and inadequate government payment Private Payer 150% 140% Reimbursement as a % of cost 130% 120% 110% 100% Medicaid(1) 90% Medicare(2) 80% 70% 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

13

Source: American Hospital Association (2018)

The business case...

15

Challenges making the business case

Multiple, competing, and shifting **priorities**



Unclear, intangible **financial benefit**

Business case examples

	Intervention Objective	Intervention	Financial Impact
*	Improve <i>process efficiency</i> (reduce unnecessary steps and time)	Eliminate/reduce staffing (FTE)	Reduced labor expense
*	Reduce <i>unnecessary utilization</i> (tests, procedures, supplies)	Implement EBM pathway, formulary	Reduced expense per unit of service
*	Improve bed utilization and care level	Implement patient acuity-bed match	Reduced expense per discharge
*	Reduce patient <i>no-show</i> clinic visits	Implement patient call reminders	Improved labor productivity
*	Improve patient experience	Improve access, service	Increased revenue
*	Reduce ED left w/o being seen (LWBS)	Improve throughput	Increased revenue
*	Reduce staff turnover	Increase engagement	Reduced expense
*	Create new/expand service or program	Launch business plan	Increased revenue

19

Step 1. Identify the opportunity

- Define the problem
- Develop the goal
- Identify key stakeholders

Define the problem

- Develop a call-to-action why the problem needs to be addressed ('so what' test).
- Define the current or potential impact of the problem
- 3. On whom

"So things are good, stuff is OK, and I reiterate my request for more specific data."

21

Develop the Goal

Develop the goal

- Current baseline and planned goal
- ❖ SMART: Specific, Measurable, Achievable, Relevant, Time-oriented
- ❖ BLUF: Implementing X (process) will have Y impact (leading and lagging indicators) in **Z** (period).

Example:

Streamlining workflow processes in the ICU is projected to improve throughput to reduce the average time to admit a patient from **3 to** 2.7 hours (10%), improving patient experience¹ scores from 66% to 71% (5%), and reduce waste and unnecessary expense² by **\$750** (3%) per patient, within 6 months from the project kick-off.

- HCAHPS Overall Rating of Hospital
 Total direct variable cost based on \$3,500 per ICU bed day

23

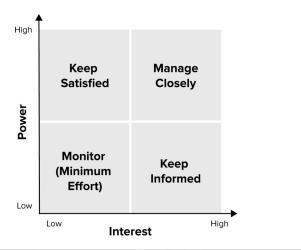
Develop the goal

Leading indicators

- Improving quality of care/clinical outcomes
- Improving patient safety
- Improving access to care
- Enhancing the patient experience

Lagging indicators

- Improving efficiency and reducing waste
- Reducing unnecessary cost
- Increasing revenue



Identify Key Stakeholders

25

Identify key stakeholders

- Responsible for final decision
- Likely to be affected by the intended outcome
- Can assist or block
- **Experts**, special resources
- Influence other stakeholders
- Customers and suppliers

Estimate Cost of Waste

27

Calculating cost savings by reducing surgical site infections (SSIs)

Sample Calcu	ulation
Current SSI rate	1.0%
Annual surgeries	10,000
Cost per SSI	\$20,750
Total Cost of Waste	

Calculating cost savings by reducing average length of stay (example)

Cost of Waste

Sample Calculation (Part 1)

MS-DRG 470 (Total Joint Repl) Annual discharges 1,500 Average LOS

Total patient days* 6,000

Sample Calculation (Part 2)

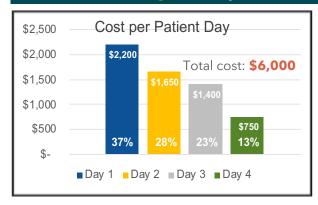
Cost per patient day \$1,500 Total cost of care \$9 M

Sample Calculatio	n (Part 3)
GMLOS (target)	3.5 days
Variance to LOS	0.5 days
Fewer patient days	

29

Estimating cost of waste: Length of stay

The 'flaw of averages'...the promise and pitfall of ALOS reduction savings


Sample Calculation

Cost per patient day \$1,500 Cost of last day \$750 Actual cost savings \$562,500

Estimating cost of waste: Length of stay

The 'flaw of averages'...the promise and pitfall of ALOS reduction savings

- Last day costs relatively insignificant
- Staffing reduction required for savings (e.g., close unit, flex, staffing grid)
- Financial impact:
 - **Process** and **mode**
 - Unmet demand or lost volume

31

Calculating additional revenue from increasing throughput (ED example)

Sample Calculation (Part 1)					
Annual ED visits	50,000				
ED admission rate	15%				
Annual LWOBS rate	4.0%				
Lost visits					
Lost admissions					
Sample Calculation (Part 2)					

Sample Calculation	n (Part 2)
Revenue per ED visit	\$500
Revenue per admit ^{1,2}	\$2,500

Annual lost visit revenue
Annual lost admit revenue
Total lost revenue

Inpatient and Observation admissions
 No separate outpatient revenue if patient admitted

Step 4. Project financial impact

- Anticipated financial impact from implementing the proposed solution
- Involve key stakeholders
- Incremental cost

33

Monetizing quality: Types of financial impact

Туре	Financial Impact		Description
1	Direct	6	Measurable financial impact Example: reduced supply cost or utilization
2		Cost savings	Throughput time saved, but no financial impact without making staffing changes Example: staffing mix or reduction in hours
3	Indirect	Revenue growth	Throughput time saved, but no financial impact without creating capacity to grow additional profitable volume Example: + appointments, beds, OR

Monetizing quality: Type 1

Туре	Financial Impact		Description		
1	Direct Cost savings Measurable financial impact				
Scenario: Seeking to <i>improve clinical outcomes</i> and <i>reduce cost</i> in its total joint replacement program, service line leaders implemented a hip implant <i>demand matching</i> program to better align the prosthetic with patient-specific needs.					
15% (6	•	lity: nnual total hips uplants could use			

demand" without affecting outcomes Cost savings: \$5,000

Total Projected Cost Savings: 60 hips x \$5,000 implant cost = \$300,000

35

Monetizing quality: Type 2

Туре	Financial Impact		Description			
2	Indirect	Cost savings	Throughput time saved, but no financial impa- without making staffing changes			
Scenario: Considering top-of-license staffing opportunities, the Radiology Director evaluated using transporters during peak hours, instead of radiology technologists to move or escort patients to and from the ED to various imaging services.						
Monetizing Quality: 2,000 transporter hours required to reduce 500 hours of rad tech's time spent moving patients per year Rad tech hourly rate: \$45.00 Transporter hourly rate: \$12.00 Hourly cost savings: \$33.00						
Total Projected Cost Savings: \$24,000 (transp) - \$22,500 (tech) = \$1,500						

Monetizing quality: Type 3

Туре	Financial Impact			Description		
3	Indirect	Revenue growth	Throughput time saved, but no financial impa without creating capacity			
Scenario: Leveraging the 500 hours of the <i>rad tech time saved</i> , the Radiology Director implemented <i>'live' scripted patient call reminders</i> to reduce the <i>no-show rate</i> for outpatient imaging						
Monetizing Quality: The initiative cut the 20% annual no-show rate in half in the first 6 months				otal annual scans: verage net revenue/scan: ocreased annual scan olume:	30,000 \$500 3,000	
Total Projected Cost Savings: \$500 × 3,000 = \$1,500,000						

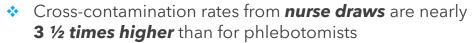
37

Step 5. Calculate return on investment (ROI)

ROI = Anticipated financial impact - cost of the proposed solution

Cost of proposed solution

Include:


- NPV
- IRR
- Payback period
- Sensitivity analysis
- Breakeven analysis

Cross-contaminated specimens in the ED

- Blood culture contamination causes unnecessary patient morbidity and cost
- Lab specimens for blood cultures are typically drawn by nurses
- When the ED is busy and nurses are tied up triaging and treating patients, phlebotomists from the lab draw blood for diagnostic testing

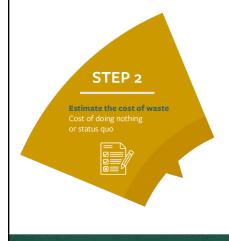
41

Cross-contaminated specimens in the ED

- Clearly define the problem and goal and identify key stakeholders
- 2. Estimate the total annual cost of waste from contaminated specimens in the ED.
- 3. Propose a viable solution and the total implementation cost to achieve the goal
- 4. Project the anticipated financial impact from implementing your proposed solution (decreased expense, increased in revenue
- 5. Calculating the return on investment; total project financial impact (4) identified minus the total cost of your proposal (3)

Step 1. Identify the opportunity

- Problem Statement: Cross-contamination causes increased morbidity and cost. Rate for nurses is higher (7.05%) than phlebotomists (2.14%).
- SMART Goal: Hire 4.2 FTE phlebotomists and train all nurses to reduce overall cross-contamination rate in the ED from 5.7% (375 specimens) to 2.% (143) in 6 months
- Key Stakeholders: ED nurses, phlebotomists, physicians, infection control and prevention team, ED Director, Finance Director


43

Step 2. Estimate the cost of waste

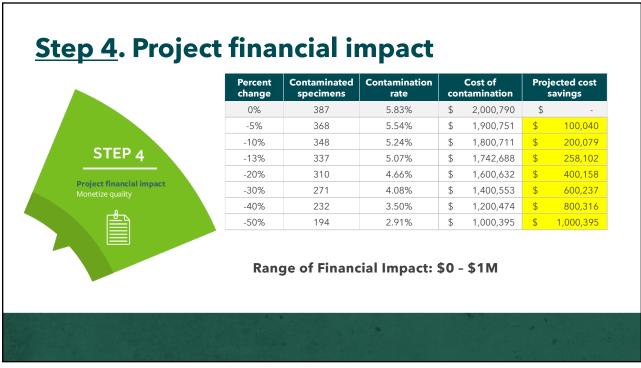
	ED RN sta	aff lab draws	Phlebotom	nist Lab Draws
Month	Specimens drawn	Number contaminated	Specimens drawn	Number contaminated
July	523	27	193	3
August	367	20	139	3
September	386	27	160	4
October	403	31	154	3
November	340	30	158	3
December	387	29	152	4
January	408	33	170	3
February	350	34	138	4
Total	3,164	231	1,264	27
Annualized	4,746	347	1,896	41

Contamination Cost of Waste	ED RN	Phlebotomist	
Contamination rate	7.30% 2.14%		
Total contamination rate	5.83%		
Cost per contamination	\$5,170		
Cost	\$1,791,405	\$209,385	
Total Cost of Waste (annual)	\$2,0	00,790	

Total Cost of Waste: \$2,000,790

45

Step 3. Determine cost of viable solution(s)

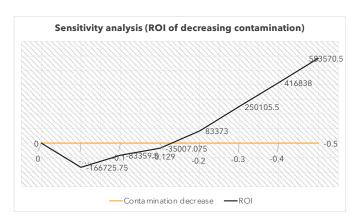


- Reasonable **cost** *assumptions*
- Incremental (new) costs
- Opportunity costs

Step 3. Determine cost of viable solution(s) Incremental Operating Expense **Phlebotomist Shifts covered** Days covered **Total expense** \$ 50,050 STEP₃ 5 2 2 \$100,100 5 \$150,150 Determine cost of viable solution(s) 4.2 3 7 \$210,210 **Incremental Operating Expense** Education Total ED nurses Percent trained Total expense \$10,000 25% 50% \$20,000 60 75% \$30,000 100% \$40,000 **Total Cost of Solution: \$250,210**

Step 5. Calculate return on investment (ROI) Contamination Contaminated specimens Return on investment Cost of contamination Return on investment % 0% 387 5.83% \$2,000,790 \$ STEP 5 \$1,900,751 -5% 368 5.54% \$100,040 (\$150,171)-60.0% -10% 348 5.24% \$1,800,711 \$200,079 (\$50,131) -20.0% Calculate return on \$400,158 \$149,948 59.9% -20% 310 4.66% \$1,600,632 investment (ROI) \$1,400,553 271 4.08% \$600,237 139.9% -30% \$350,027 Total projected new -40% 232 3.50% \$1,200,474 \$800,316 \$550,106 219.9% revenue minus total cost -50% 2.91% \$1,000,395 \$1,000,395 \$750,185 299.8% Range of ROI: (-\$150k - \$750k)

Step 5. Calculate return on investment (ROI)


	Percent change	Contaminated specimens	Contamination rate	Cost of contamination	Projected cost savings	Return on investment	Return on investment %
	0%	387	5.83%	\$2,000,790	\$ -		
Namative POL	-5%	368	5.54%	\$1,900,751	\$100,040	(\$150,171)	-60.0%
Negative ROI	-10%	348	5.24%	\$1,800,711	\$200,079	(\$50,131)	-20.0%
Breakeven	-13%	337	5.07%	\$1,742,688	\$258,102	\$7,892	3.2%
Γ	-20%	310	4.66%	\$1,600,632	\$400,158	\$149,948	59.9%
	-30%	271	4.08%	\$1,400,553	\$600,237	\$350,027	139.9%
Positive ROI	-40%	232	3.50%	\$1,200,474	\$800,316	\$550,106	219.9%
	-50%	194	2.91%	\$1,000,395	\$1,000,395	\$750,185	299.8%
Benchmark L	-60%	147	2.21%	\$760,300	\$1,240,490	\$999,280	395.8%

Range of ROI: (\$150k - \$1M)

53

Step 5. Calculate return on investment (ROI)

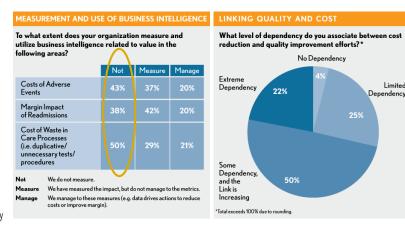
Contamination decrease	Return on investment
0%	\$0
-5%	(\$150,171)
-10%	(\$50,131)
-13%	\$7,892
-20%	\$149,948
-30%	\$350,027
-40%	\$550,106
-50%	\$750,185
-60%	\$990,280

Getting to "Yes": Overcoming Common Barriers

55

Common barriers

- 1. Data
- 2. Language barrier
- 3. Uncertain financial risk



Data

- 1. D.R.I.P.
- 2. Means to an end
- 3. Good for great
- 4. Paralysis by analysis

Over 95% of Healthcare CFOs Doubt Their Data Analytics Abilities

Most healthcare CFOs are not confident that they can adequately address the data analytics needs of their organizations.

57

Linking quality and finance

Traditional Quality Scorecard

Performance	Base	line	Target Goal		
Improvement Measures	Cases	Rate	Cases	Rate	
C. diff Infection	84	6.00%	42	3.0%	
MRSA	43	8.00%	27	5.0%	
SSI	11	4.50%	5	2.0%	
LWOBS	900	3.00%	750	2.5%	
Re-admissions	78	3.60%	32	1.5%	
Clinic no-shows	341	18.00%	208	11.0%	

Linking quality and finance

Integrated Quality Scorecard

Performance	Base/ine				Target Goal		
Improvement Measures	Cases	Rate	Cost	Total	Cases	Rate	Savings
C. diff Infection	84	6.00%	\$7,285	\$546,375	42	3.0%	\$305,970
MRSA	43	8.00%	\$6,248	\$268,664	27	5.0%	\$437,360
SSI	11	4.50%	\$23,272	\$255,992	5	2.0%	\$651,616
LWOBS	900	3.00%	\$725	\$652,500	750	2.5%	\$25,375
Re-admissions	78	3.60%	\$7,300	\$569,400	32	1.5%	\$153,300
Clinic no-shows	341	18.00%	\$230	\$78,430	208	11.0%	\$35,420

Total cost of waste: **\$2,371, 361** Total savings: **\$1,609, 041**

59

Data sources

Data Source	Strengths	Limitations
Published research	Evidence-basedPotentially unbiased	 Difficult to generalize Ambiguous costing methodology < 1% of clinical journals include financial data
White papers	CurrentSolution-oriented	 Typically biased (especially if published by a vendor)
Publicly available (Medicare Cost Report)	Audited (used to determine reimbursementBenchmarking	Dated (6-12 months lag)Expensive (vendor)
Unit-level (chart audit, reports)	Specific to organizationTied to clinical data	AvailabilityAccuracy

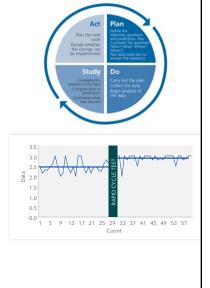
Common barriers

- 1. Data
- 2. Language barrier
- 3. Uncertain financial risk

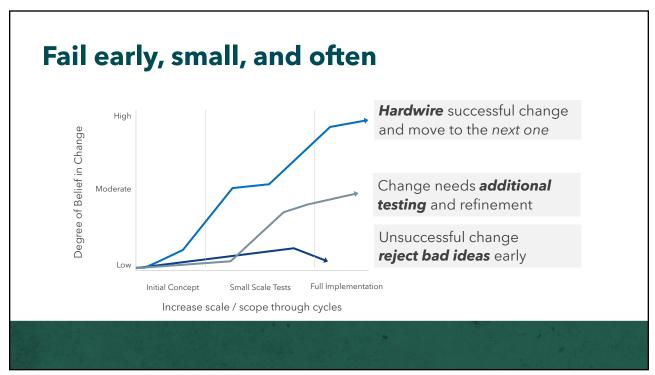
Common barriers

- 1. Data
- 2. Language barrier
- 3. Uncertain financial risk

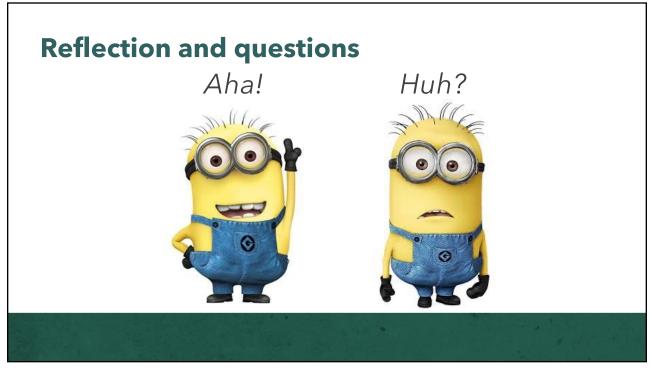
Projected positive ROI


Positive ROI -

	Percent change	Contaminated specimens	Contamination rate	Cost of contamination	Projected cost savings	Return on investment	Return on investment %
-	-20%	310	4.66%	\$1,600,632	\$400,158	\$149,948	59.9%
	-30%	271	4.0 %	1, 0 5	\$6 0,237	\$350,027	139.9%
	-40%	232	3.50%	1 10, 7	\$5 0,316	\$550,106	219.9%
	-50%	194	2.71%	\$1,000,375	\$1,000,395	\$750,185	299.8%
	-60%	147	2.21%	\$760,300	\$1,240,490	\$999,280	395.8%


Rapid cycle testing (RCT)

- 1. Determine the measure to test the data source
- 2. Create plan to test the change
- 3. Collect baseline data
- 4. Orient and train staff
- 5. Run the test
- 5. Analyze results
- 7. Repeat process (as needed)


	Pre		Post			
Count	Data	Avg	Count	Data	Av	
1	2.5	2.5	1	3.0	2.5	
2	2.2	2.5	2	3.0	2.5	
3	2.3	2.5	3	2.0	2.5	
4	2.3	2.5	4	3.0	2.5	
5	2.5	2.5	5	2.8	2.5	
6	2.6	2.5	6	3.0	2.5	
7	3.0	2.5	7	3.0	2.5	
8	2.5	2.5	8	3.0	2.5	
9	2.0	2.5	9	2.5	2.5	
10	2.2	2.5	10	3.0	2.5	
11	3.0	2.5	11	2.8	2.5	
12	2.5	2.5	12	3.0	2.5	
13	2.2	2.5	13	3.0	2.5	
14	2.5	2.5	14	3.0	2.5	
15	2.0	2.5	15	2.8	2.5	
16	3.0	2.5	16	3.0	2.5	
17	3.0	2.5	17	2.8	2.5	
18	2.5	2.5	18	2.9	2.5	
19	2.2	2.5	19	2.8	2.5	
20	2.5	2.5	20	3.0	2.5	
21	2.2	2.5	21	3.0	2.5	
22	2.5	2.5	22	3.0	2.5	
23	2.5	2.5	23	3.0	2.5	
24	2.3	2.5	24	2.5	2.5	
25	2.2	2.5	25	3.0	2.5	
26	2.6	2.5	26	3.0	2.5	
27	2.8	2.5	27	2.8	2.5	
28	2.6	2.5	28	2.9	2.5	
29	2.8	2.5	29	3.0	2.5	
30	2.4	2.5	30	3.0	3.0	
31		2.0	31		3.0	
32		2.0	32		3.0	

67

Making the Business Case for Quality

Rural Critical Access Hospital and Clinic Conference

November 10, 2022 Kearney, Nebraska **Richard (Rich) Priore**, ScD, MHA, FACHE Founder & CEO, Excelsior HealthCare Group Clinical Associate Professor, Tulane University

© Excelsior HealthCare Group, LLC 2022 All Rights Reserved